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We present a new distance-vector routing protocol for
a packet radio network. The new distributed routing
protocol, WRP, works on the notion of second-to-last
hop node to a destination. WRP reduces the number
of cases in which a temporary routing loop can occur
and also provides a mechanism for the reliable trans-
mission of update messages. The performance of WRP
has been compared quantitatively by simulations with
that of distributed Bellman-Ford (DBF),DUAL (a loop-
free distance-vector algorithm) and an ideal link-state
algorithm (ILS) which represents the state of the art
of Internet routing, in a highly dynamic environment.
The simulation results indicate that WRP is the most
efficient of the algorithms simulated in a wireless envi-
ronment.
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With the recent proliferation of laptop and portable computers, and
the development of wireless network interfaces, host mobility is
becoming an important issue. An efficient routing protocol is nec-
essary to communicate directly with the participating computers in
a highly dynamic environment in which the hosts are mobile.

The routing protocols used in multihop packet-radio networks
implemented in the past [1, 2, 11] were based on shortest-path
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routing algorithms that have been typically based on the distributed
Bellman-Ford algorithm (DBF) [3]. According to DBF, a node
knows the length of the shortest path from each neighbor node to
every network destination and this information is used to compute
the shortest path and next node in the path to each destination. An
update message contains a vector of one or more entries, each of
which specifies as a minimum, the distance to a given destination.
A major performance problem with DBF is that it takes a very long
time to update the routing tables of network nodes after network
partitions, node failures, or increases in network congestion. This
performance problem of DBF stems from the fact that it has no
inherent mechanism to determine when a network node should stop
incrementing its distance to a given destination.

Because of DBF’s performance problems, most router manufac-
turers have opted for routing protocols based on topology broadcast
such as OSPF [12]. However, there are significant differences be-
tween the wired Internet over which standard routing protocols are
used today, and wireless networks. Today’s networks have rela-
tively high bandwidth and topologies that change infrequently; in
contrast, wireless networks have mobile nodes and have limited
bandwidth for network control. Mobility management algorithms
which involve user location and hand-off management, essentially
require reliable and efficient routing algorithms. For scalability
with base stations and mobile nodes, these algorithms need to be
distributed. Also, the routing algorithms should be flexible enough
to serve as a template to carry mobility management information. In
addition, since the bandwidth is limited in a wireless environment,
the routing algorithms should not suffer from looping problems.

The flooding techniques used in link-state or topology broadcast
protocols create excessive traffic in a multihop radio network with
dynamic topology. On the other hand, the routing protocols based
on DBF or modifications of DBF take a long time to converge and
the frequent topology changes in a wireless network with mobile
nodes make the looping problem of DBF unacceptable. Therefore,
there is a need for a new routing protocol which is devoid of all
these drawbacks.

In the recent past, a number of efforts have been made to address
the limitation of DBF and topology broadcast in mobile wireless
networks. One such effort is the DSDV protocol [5]. In this pro-
tocol, each mobile host which is a specialized router, periodically
advertises its view of the interconnection topology with other mo-
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bile hosts within the network thereby maintaining an up to date
information about the status of the network. But, DSDV suffers
from the inherent problem of synchronization. In DSDV, a node
has to wait until it receives the next update message originated by
the destination to update its distance table entries. Also, it uses both
periodic and triggered updates for updating routing information.
This could cause excessive overhead.

A distributed routing algorithm for mobile wireless networks
based on diffusing computations has been proposed by Corson and
Ephremides [6]. This protocol relies on the exchange of short con-
trol packets forming a query-reply process. It also has the ability to
maintain multiple paths to a given destination. This is a destination-
oriented protocol in which separate versions of the algorithm run
independently for each destination. Routing is source-initiated in
which routes are maintained by those sources which actually desire
routes. Even though this algorithm provides multiple paths to the
destination, because of the query-based synchronization approach
to achieve loop-free paths, the communication complexity could be
high.

Recently, a number of distributed shortest-path algorithms have
been proposed [4, 7, 9, 10, 14] that utilize information regarding
the length and second-to-last hop (predecessor) of the shortest path
to each destination to eliminate the counting-to-infinity problem of
DBF. We call this type of algorithms as path-finding algorithms.
According to these algorithms, each node maintains the shortest-
path spanning tree reported by its neighbors. A node uses this
information along with the cost of adjacent links to generate its own
shortest-path spanning tree. An update message exchanged among
neighbors consists of a vector of entries that report updates to the
sender’s spanning tree; each update entry contains a destination
identifier, the distance to the destination, and the second-to-last hop
of the shortest path to the destination.

Path-finding algorithms are an attractive approach for wireless
networks. Although they eliminate counting-to-infinity problem,
they can still incur substantial temporary loops in the paths specified
by the predecessor before they converge. This can lead to slow
convergence, or incur substantial processing by requiring a node
to update its entire routing table for each input event. To address
these problems, we have proposed a path-finding algorithm, PFA,
that substantially reduces the temporary looping situations [13].

The rest of this paper describes a routing protocol for a packet
radio network based on PFA, which we call wireless routing protocol
(WRP). Section 2 gives a detailed description of WRP, illustrating
the key aspects of the protocol’s operation. Section 3 compares the
performance of WRP with that of DBF, DUAL and ILS. Finally,
Section 4 presents our conclusions.
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To describe WRP, we model a network as an undirected graph
represented as 4$57698;:=< , where 6 is the set of nodes and : is the
set of links (or edges) connecting the nodes. Each node represents a
router and is a computing unit involving a processor, local memory
and input and output queues with unlimited capacity. A functional

bidirectional link connecting the nodes is assigned a positive weight
in each direction. All messages received (transmitted) by a node
are put in the input (output) queue and are processed in FIFO order.
The communication links in the network are such that all update
messages transmitted over an operational link are received in the
order in which they were transmitted within a finite time.

A link is assumed to exist between two nodes only if there is radio
connectivity between the two nodes and they can exchange update
messages reliably with a certain probability of success. When a
link fails, the corresponding distance entries in a node’s distance
and routing tables are marked as infinity. A node failure is modeled
as all links incident on that node failing at the same time.

WRP is designed to run on top of the link-level protocol of a
wireless network. Update messages may be lost or corrupted due
to changes in radio connectivity or jamming. Reliable transmission
of update messages is implemented by means of retransmissions.
After receiving an update message free of errors, a node is required
to send a positive acknowledgment (ACK) indicating that it has
a good radio connectivity and has processed the update message.
Because of the broadcast nature of the radio channel,a node can send
a single update message to inform all its neighbors about changes
in its routing table; however, each such neighbor sends an ACK to
the originator node.

In addition to ACKs, the connectivity can also be ascertained
with the receipt of any message from a neighbor (which need not
be an update message). To ensure that connectivity with a neighbor
still exists when there are no recent transmissions of routing table
updates or ACKs, periodic update messages without any routing
table changes (null update messages) are sent to the neighbors.
The time interval between two such null update messages is the
HelloInterval.

If a node fails to receive any type of message from a neighbor for
a specified amount of time (e.g., three or four times the HelloInter-
val known as the RouterDeadInterval), the node must assume that
connectivity with that neighbor has been lost.
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For the purpose of routing, each node maintains a distance table,
a routing table, a link-cost table, a message retransmission list and
an ack-status table.

The distance table of node K is a matrix containing, for each
destination L and each neighbor of K (say M ), the distance to L ( NEOPRQ )
and the predecessor (S�OP�Q ) reported by M .

The routing table of a node K is a vector with an entry for each
known destination L which specifies:
T The destination’s identifier

T The distance to the destination ( N OP )
T The predecessor of the shortest path chosen toward L (S�OP )
T The successor ( U�OP ) of the shortest path chosen for L
T A marker ( V�W"X OP ) used to update routing table; it specifies

whether the entry corresponds to a simple path ( VYW"X OP = cor-
rect), a loop ( V�W"X OP = error) or a destination that has not been
marked ( V�W"X OP = null).



Procedure Init1
whenrouter Z initializes itself
do begin

set a link state table with costs of adjacent links;[D\ Z ; [ Z \D]_^�` Z]ba=c ;
for each (

]Id�[ Z )
do begin[ Z \e[$f_] ; gihkj Z] \)l�m;`�` ;n Z] \)l�m;`�` ; o Z] \el�m;`�` ; p Z] \ c
endp ZZ \ 0; n@ZZ \qlrm;`�` ; o ZZ \qlrm;`�` ; gihkj ZZ \es�tvu�u7w7s g
for each x d�[ call Init2(

]�y x )
for each (

l�dI[ Z ) do add (0
y Z y 0 y Z ) to z�{�|r} Zi~ l;�]I\

retransmission time; � \ hello count;� \ retransmission count;
call Send

end

Procedure Init2(
]�y x )

begin p Zx ] \ c ; o Zx ] \)l�mk`�` ; n Zx ] \qlrm;`�` ; n w@�vl;t Zx ] \ 0

end

Procedure Send
begin

for each (
lId�[ Z )

do begin
if ( z�{�|r} Z�~ l;� is not empty)
then send messages with z�{�|r} Z�~ lk� to

l
empty z�{�|r} Z	~ l;�

end
end

Procedure Message
when router Z receives a message on link ( Z y�� )
begin

if (
�I�d�[ Z ) do

begin[ Z \e[ Z f�� ;` Z� \ cost of new link;

if (
�I�d�[

) begin[�\�[$f��
; gihkj Z� \qlrm;`�` ;p Z� \ c ; o Z� \)l�m;`�` ; n Z� \)l�m;`�` ;

for each
]Id�[ Z do call Init2(

]�y7�
)

end
for each ( Z y7��y�` Z� ) do

send update(0
yY��y p Z� y o Z� )

end
reset HelloTimer;

for each entry ~ m �x y x y�� p �x y7u o �x �3^ Z �� x
do begin

if ( x �d�[ )
then begin

if (
� p �x � c ) then delete entry

else begin[D\e[�f x ;
for each entry

]Id�[ Z call Init2(
]ry x )gihkj Zx \el�m;`�` ; call DT

end
end
else begingihkj Zx \)l�mk`�` ;
end

end
for each entry ~ m �x y x y�� p �x y7u o �x � left

^ Z �� x
do case of

m �x
0: call Update( x y�� )
1: call ACK( x y7� )

end
call Send

end

Procedure Create RList( n w@�vl;t )
begin n w7�vl;t�\ n w7�vl;tJ� 1;

[*w Z�j��k� tvu | w g \�[ Z�@Z�g��*hvov� � \ 0;
�Jw g u h l n �_Z n7n Z tvl }%Z�� wRu�\�]

add updates to RList
end

Procedure Delete RList( n w7�vlkt )
begin

set �@Z�g	�*h�ov� n w7�vlkt � \ 1; � w@`�w g w�\ 1
for all

l�dI[ Z begin
if ( �@Z g	�*hvov� n w@�vl;t � � 0) � w7`�w g w�\ 0;

end
if ( � w@`�w g w � 1) delete RList[seqno] end

Procedure Update RList( n w@�vl;t )
begin

reset RetransmissionTimer
send update

� zJZ n g	� n w7�vl;t � ;
end

Procedure Clean RList ( n w@�vl;t )
begin

for all entries in
� zJZ n g

delete
� zJZ n g	� n w@�vl;t � ;

end

Procedure Connectivity
when HelloTimer expires
begin � w7`�`�t���tvm�l g	� � � \ � w7`�`�t���tvm�l g	� � � � 1;

if (
� w7`�`�t���tvm�l g	� � � a � ) then reset HelloTimer;

else begin[ Z \C[ Z+� �
call Delete RList(

�
)` Z� \ cgihkj Z� \�l�m;`�`

delete column for
�

in distance table
update routing table

end
end

Procedure TimeOut( Z y�� )
when RetransmissionTimer expires
begin

RetransmissionCounter
\

RetransmissionCounter - 1;
if (RetransmissionCounter a z)

call Update RList(
�

)
else begin[ Z \C[ Z+� �

call Delete RList(
�

)` Z� \ cgihkj Z� \�l�m;`�`
delete column for

�
in distance table

update routing table
end

end

Procedure DT
when distance table update has to be done
begin p Zx � \e` Z� � p �x ; o Zx � \ o �x ;

(2) for all neighbors �
do begin

if k is in the path from i to j in
the distance table through neighbor �

then p Zx7� \ p Z� � � p �x ; o Zx7� \ o �x
end

end

Figure 1: Protocol Specification

The link-cost table of node K lists the cost of relaying information
through each neighbor M , and the number of periodic update periods
that have elapsed since node K received any error-free messages from
M .

The cost of a failed link is considered to be infinity. The way
in which costs are assigned to links is beyond the scope of this
specification. As an example, the cost of a link could simply be the
number of hops, or the addition of the latency over the link plus
some constant bias. The cost of the link from K to M ( K@8kM ) is denoted
by ��OQ .

The message retransmission list (MRL) specifies one or more re-
transmission entries, where the � �i¡ entry consists of the following:
T The sequence number of an update message

T A retransmission counter that is decremented every time node
K sends a new update message

T An ack-required flag (denoted by W OQk¢ ) that specifies whether
node M has sent an ACK to the update message represented by
the retransmission entry

T The list of updates sent in the update message

The above information permits node K to know which updates of
an update message have to be retransmitted and which neighbors
should be requested to acknowledge such retransmission. Node K
retransmits the list of updates in an update message when the re-
transmission counter of the corresponding entry in the MRL reaches



Procedure ACK(
l

)
when router Z receives an ACK on link ( Z y7� )
begin

call Delete RList(
l

);
RetransmissionCounter

\
z;

end

Procedure Update( Z y�� )
when router Z receives an update on link ( Z y�� )
begin

send ACK to neighbor
�

RetransmissionCounter
\

z;
RetransmissionTimer

\
x;

(0) begin
update=0;� }&£�¤b¥ Z \e¦ ;p�}&£�¤1¥ Z y � \e¦ for all neighbors �

(1) for each triplet ~ x y p �x y o �x � in § �ky Z y x �� Z do

call procedure DT
(3) begin

if there are � and x such that

( p Zx7� a p Zx ) or (( p Zx@�_¨ p Zx ) and ( � �$n Zx ))

then call RT Update
end

(4) begin if (
� }�£&¤1¥ Z �� ¦ ) then

for each neighbor � do begin
for each triplet g � ~ x y p Zx y o Zx � in

� }©£�¤1¥ Z
do begin

if � is not in the path from Z to x
then p�}+£�¤b¥ Z y � \ p�}&£�¤1¥ Z y � f g ;

end
send p�}+£&¤1¥ Z y � to neighbor � ;

end
end

end

Procedure RT Update
when routing table has to be updated
begin

find minimum of the distance entries p�} �_Z l
if ( p Zx n Zx � p%} �_Z l ) then

l n \ n Zx
else
l n \ � ^@ª � dI[ Z and p Zx7� � p�} �_Z l+« ;]I\ x ;

while ( p Z]%l n � ¤¬Z l�ª p Z] �_­ � d�[ Z «
and p Z]�l n a=c and gihkj Z] � l�m;`�` )

do
]I\ o Z]�l n ;

if ( o Z]�l n � Z or g�h�j Z] � correct)

then gih�j Zx \ correct else gih�j Zx \ error

if ( gih�j Zx � correct) then begin

if ( p Zx �� p�} �_Z l or o Zx �� o Zx l n ) then beginn w@�vl;t�\ n w@�vl;tJ� 1;

add (0, x , p�} �_Z l , o Zx l n y n w7�vl;t ) to z�{�|r} Z ~ ]k� ­ ]®d�[ Z ;
call Clean RList( n w7�vlkt )
call Create RList( n w@�vl;t )

endp Zx \ p�} �_Z l ; o Zx \ o Zx l n ; n7Zx \)l n
end
else begin

if( p Zx a¯c ) then beginn w@�vl;t�\ n w@�vl;tJ� 1;
add (0, x , c , null, n w@�vl;t ) to z�{�|r} Z�~ ]k� ­ ]®d�[ Z ;
call Clean RList( n w7�vlkt )
call Create RList( n w7�vl;t )

endp Zx \ c ; o Zx \ null; n Zx \ null

end
end

Figure 2: Protocol Specification (Cont..)

zero. The retransmission counter of a new entry in the MRL is set
equal to a small number (e.g., 3 or 4).
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In WRP, nodes exchange routing-table update messages (which
we call “update messages” for brevity) that propagate only from a
node to its neighbors. An update message contains the following
information:

T The identifier of the sending node.

T A sequence number assigned by the sending node.

T An update list of zero or more updates or ACKs to update
messages. An update entry specifies a destination, a distance
to the destination, and a predecessor to the destination. An
ACK entry specifies the source and sequence number of the
update message being acknowledged.

T A response list of zero or more nodes that should send an ACK
to the update message.

In the event that the message space is not large enough to contain
all the updates and ACKs that a node wants to report, they are sent
in multiple update messages. An example of this event can be the
case in which a node identifies a new neighbor and sends its entire
routing table.

The response list of the update message is used to avoid the
situation in which a neighbor is asked to send multiple ACKs to the
same update message, simply because some other neighbor of the
node sending the update did not acknowledge.

The first transmission of an update message must ask all neigh-
bors to send an ACK, of course, and this is accomplished by speci-
fying the “all-neighbors address,” which consists of all 1’s.

When the update message reports no updates, the “empty ad-
dress” is specified; this address consists of all 0’s and instructs the
receiving nodes not to send an ACK in return. This type of up-
date message is used as a “hello message” from a node to allow its
neighbors to know that they maintain connectivity, even if no user
messages or routing-table updates are exchanged.

As we explain subsequently, an ACK entry refers to an entire
update message, not an update entry in an update message, in order
to conserve bandwidth.
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Figures 1 and 2 specify important procedures of WRP used to update
the routing and distance tables.

A node can decide to update its routing table after either receiving
an update message from a neighbor, or detecting a change in the
status of a link to a neighbor.

When a node K receives an update message from its neighbor M ,
it processes each update and ACK entry of the update message in
order.

In WRP, a node checks the consistency of predecessor informa-
tion reported by all its neighbors each time it processes an event
involving a neighbor M . In contrast, all previous path-finding algo-
rithms [4, 10, 14] check the consistency of the predecessor only for
the neighbor associated with the input event. This unique feature of
WRP accounts for its fast convergence after a single resource failure
or recovery as it eliminates more temporary looping situations than
previous path-finding algorithms.
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To process an update from neighbor M regarding destination L , the
distance and the predecessor entries in the distance table are updated.
A flag (tag) is set to specify that this entry in the table has been



changed. A unique feature of WRP is that node K also determines
if the path to destination L through any of its other neighbors ¸�¹=º»
O
¼ ¹=½¾ M�¿ includes node M . If the path implied by the predecessor

information reported by node ¹ includes node M , then the distance
entry of that path is also updated as N OP�À ¾ N OQkÀ�Á N QP and the
predecessor is updated as S OP�À ¾ S QP . Thus, a node can determine
whether or not an update received from M affects its other distance
and routing table entries.

To update its distance and predecessor for destination L (Proce-
dure RT Update), node K chooses a neighbor S that has reported
routing information such that:

T The path from S to L (which is implied by the predecessor
information reported by S ) does not include node K

T NEOP@Â)Ã NEOP�Ä for any other neighbor Å , and NÆOÇ Â Ã NEOÇ Ä for
any other neighbor Å and for every node È in the path from K
to L .

The above means that node K chooses node S as its successor
to a destination L if that neighbor appears to offer a smallest-cost
loop-free path to L and all the intermediate nodes in the path to L .

When node K sends an update message, it updates its ack-status
table and message retransmission list. For each destination L for
whom there is an update being reported, node K sets the ack-required
flag for all its neighbors. It also adds an entry in the update-
retransmission list containing the sequence number given to the
update message, and starts the retransmission timer for the entry.
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Node K sends a new update message after processing updates from
its neighbors or detecting a change in a link to a neighbor. Whenever
node K sends a new update message, it must

T Decrement the retransmission counter of all the existing entries
in the MRL

T Delete the updates in existing entries in the MRL that are
included in the new update message

T Add an entry in the MRL for the new update message

When the list of updates of a MRL entry is emptied by the
transmission of a new update message, node K erases that entry
from the MRL.

When the retransmission counter for a retransmission entry �
in the MRL expires, node K sends an update message with a new
sequence number, an update list containing the list of updates of the
retransmission entry, and a response list specifying those neighbors
who did not acknowledge the update message earlier (i.e., every
neighbor M for whom W�OQk¢ ¾ 1). The retransmission counter of
existing entries in the MRL is not modified.

Note that, based on the above retransmission strategy, there is
no limit on the number of times node K would retransmit an update
message to an existing neighbor. However, as we discuss below,
node K stops considering node M as its neighbor after it fails to
communicate with it for some finite amount of time.
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An ACK entry in an update message refers to another entire update
message, i.e., it acknowledges all the updates included in the update
message bearing the referenced sequence number. Therefore, it is
up to the node whose update message is being acknowledged to
ascertain which updates are implied by a received ACK.

To process an ACK from neighbor M , node K scans its MRL for
the sequence number matching the sequence number specified in
the ACK received. Whenever a match is found, node K resets the
ack-required flag for neighbor M ; if W�OÂ�¢ ¾ 0 for entry � and every
neighbor S of node K , the retransmission entry is deleted. This
scheme obtains short ACKs at the expense of additional processing.

Node K may receive an ACK for an update message whose retrans-
mission entry has been erased after sending a more recent update
message for the same destinations. In that case, node K simply
ignores the ACK.
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To ensure that nodes know that they have connectivity even when
they do not transmit user messages or routing-table updates for
some time, every node K must periodically send an update message
reporting no changes (hello messages). Acknowledgments are not
required for such update messages, and they can be very short (e.g.,
a byte for control information and a byte for the node identifier,
since the control information can imply that there is no sequence
number, update list, or response list in the message). Alternatively,
a node may retransmit an update message if it is not too long. When
a node M comes up, it transmits a hello message.

Given that short periodic update messages are transmitted by
every node, the failure of a link to a neighbor is detected by the lack
of any user or update messages being received from that neighbor
over a period of time equal to a few update-message transmission
periods. Similarly, new links and nodes are detected by means
update messages or user messages.

When node K receives an update or user message from node M and
node M is not listed in its routing table or distance table, it adds the
corresponding entry to its distance or routing table for destination M .
An infinite distance to all destinations through node M is assumed,
with the exception of node M itself and those destinations reported
in node M ’s updates, if the message received from M was an update
message. In addition, node K notifies node M of the information
in its routing table. This information can be transmitted in one or
multiple update messages that only node M needs to acknowledge.

When a link fails or a link-cost changes, node K recomputes the
distances and predecessors to all affected destinations, and sends
to all its neighbors an update message for all destinations whose
distance or predecessor change.

��, Ò F+±"�+?�¶+ �
The following example illustrates the working of WRP. Consider
a four node network shown in Figure 3(a). All links and nodes
are assumed to have the same propagation delays. Link-costs are as
indicated in the figure. Node K is the source node, L is the destination
node and nodes M and ¹ are the neighbors of node K . The arrows next
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Figure 3: Example of the algorithm’s operation

to links indicate the direction of updates messages and the label in
parentheses gives the distance and the predecessor to destination L .
Each update will be acknowledged by an ACK message from the
neighbor. ACKs are not shown in the figure. The figure focuses on
update messages to destination L only.

When link (L"8�M ) fails, nodes L and M send update messages to
their neighboring nodes as shown in Figure 3(b). In this example,
node M is forced to report an infinite distance to L as nodes ¹ and
K have reported node M as part of their path to destination L . Node
¹ processes node M ’s update and selects link 57¹�8@L!< to destination L .
This is because of step(2) of WRP which forces node ¹ to purge any
path to node L involving node M . Also, when K gets node M ’s update
message, K updates its distance table entry through neighbor M and
checks for the possible paths to destination L through any other
neighboring nodes. Thus, a node examines the available paths
through its other neighboring nodes and updates the distance and
the routing table entries accordingly. This results in the selection
of the link ( K@8RL ) to the destination L (Figure 3(c)). When node K
receives neighbor ¹ ’s update reporting an infinite distance, node K
does not have to update its routing table as it already has correct
path information (Figure 3(d)). Similarly, updates sent by node M
reporting a distance of 11 to destination L will not affect the path
information of nodes K and ¹ . This illustrates how step(2) of WRP
helps in the reduction of the formation of temporary loops in the
explicit paths.

°�É���?��+ �������&��#%�"�;�+ ���

To gain insight into the average-case performance of WRP in a
dynamic environment, we have simulated its operation using an
actor-based, discrete-event simulation language called Drama [15],
together with a network simulation library. Link failures and recov-
eries are simulated by sending link status message to the nodes at
the end points of the appropriate links. Node failures can be treated
as all links connecting to that node going down at the same time and

the link cost changes can be treated as a link failing and recovering
with a new link cost. The connectivity of a mobile node is said to
be lost when a node does not hear from a mobile node for a certain
period of time. The connectivity with a node will be reestablished
when a node hears from a mobile node again. Mobility is mod-
eled as an arbitrary set of failures and recoveries of a mobile node
at random points in time. All simulations are done assuming unit
propagation time and zero packet processing time at each node. If
a mobile node fails when the packets are in transit, the packets are
assumed to get dropped.

Our goal is to compare the performance of WRP against the per-
formance of routing protocols based on DBF, DUAL, and ILS. To
reduce the complexity of the simulation, we have eliminated those
features of the protocols that were common to all; these features
concern the reliable transmission of updates over unreliable links,
and the identification of neighbors. Accordingly, our simulation as-
sumed that, for any of the protocols simulated, any update message
sent over an operational link is received correctly, and that a node
always receives enough user messages to know that it continues to
have connectivity with a neighbor. According to these assumptions,
there is no need to account for acknowledgments, retransmissions
of updates, or periodic transmissions of update messages.

However, our intent in running the simulations was to obtain
insight on the comparative overhead of different protocols that nec-
essarily require the transmission of acknowledgements to update
messages. We approached this problem in the following manner:
In a packet radio network, the same update messages sent by a
node is received by all its neighbors i.e., each update message is
broadcast to a node’s neighbors. However, to guarantee the reliable
transmission of updates, each neighbor must send an acknowledge-
ment to the sender of the update. Therefore, under the assumption
that no errors or collisions occur in the network channel, count-
ing the number of acknowledgements received for a single update
broadcast to all neighbors is much the same as counting the number
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Figure 4: ARPANET Link Failure
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Figure 5: ARPANET Link Recovery

of updates sent by a node to its neighbors on a point-to-point ba-
sis and with no acknowledgements—the two counts differ only by
one. Accordingly, we simulated the routing protocols’ operation in
a packet-radio network using the same point-to-point links typical
of wireline networks. The message count obtained from the simula-
tion runs is not the exact number of updates and acknowledgements
sent by each protocol, but accurately reflects the relative differences
among protocols.

The resulting simplified version of WRP we simulated is called
“path finding algorithm” (PFA), and is the same basic algorithm
first described in [13]. Similarly, ILS, DBF, and DUAL correspond
to the ideal case of the best protocols that could be designed based
on these algorithms.

To simulate the routing algorithm, a node receives a packet and
responds to it by running the routing algorithm, queueing the out-
going packets and processing the updates one at a time in the order
in which they arrive. Drama’s internals ensure that all the packets
at a given time are processed before new updates are generated.

The simulations were run on several network topologies such as
Los-Nettos, Nsfnet and Arpanet. We chose these topologies to com-

pare the performance of routing algorithms for well-known cases
given that we cannot sample a large enough number of networks
to make statistically justifiable statements about how an algorithm
scales with network parameters. The los-nettos topology has 11
nodes, a diameter of 4 hops, and each node has at most four neigh-
bors. The Nsfnet topology has 13 nodes, a diameter of 4 hops, and
each node has at most 4 neighbors. The ARPANET topology has
57 nodes, a diameter of 8 hops, and each node has a maximum of
four neighbors.

For the routing algorithms under consideration, there is only one
shortest path between a source and a destination pair and we do
not consider null paths from a node to itself. Data are collected
for a large number of topology changes to determine statistical
distribution. The statistics has been collected after each failure and
recovery of a link. To obtain the average figures, we make each
link (or node) in the network fail and count the number of steps
and messages needed for each algorithm to converge. Then the
same link (node) is made to recover and the process is repeated.
The average is taken over all failures and recoveries. Again, this
message count is not exact, but the relative difference from one
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protocol to another is accurate.
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The graphs in Figures 4 and 5 depict the number of messages
exchanged and the number of steps required before PFA, DBF,
DUAL, and ILS converge for every link failing and recovering in
the ARPANET topology. We focus more on the results for the
ARPANET topology, because of its larger size. Similar graphs for
every node failing and recovering are given in Figures 6 and 7 re-
spectively. All topology changes are performed one at a time and the
algorithms were allowed to converge after each such change before
the next resource change occurs. The ordinates of the graphs repre-
sent the identifiers of the links and the nodes while the data points
show the number of messages exchanged after each resource change
(graphs on the left hand side) and the number of steps needed for
convergence (graphs on the right hand side) in each of these figures.

For a single resource failure, PFA outperforms DUAL. This is
because, PFA does not use an internodal coordination mechanism
that spans several hops to achieve loop freedom. The performance
of PFA is comparable to that of ILS after resource failures. The

performance of PFA and DUAL is much better than that of ILS
after resource recoveries. The counting-to-infinity problem of DBF
can be clearly seen in both resource failures and resource recoveries.
Given that both resource recoveries and failures will occur in the
WRP, PFA offers the best total response to single topology changes,
in terms of both update messages and time required to obtain correct
routing tables after a topology change.
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We incorporated mobility to the existing fixed network topology by
making the links fail and come back up arbitrarily at random points
in time. The network is assumed to be fully connected with poten-
tial links. At startup, the topology is initialized to some well known
topology such as los-nettos, Nsfnet or ARPANET. After initializa-
tion, to simulate the movement of a node, a node is assumed to
have failed at its previous location and reappear in its new location.
Node failure is simulated as all the links associated with that node
going down at the same time. The gradual movement of a node
from one location to another is simulated by means of link failures
and additions. When a link fails, it can be assumed that a node is no



longer in the neighborhood of its previous neighbor. The addition
of a new link is viewed as a movement of a node wherein, a node
reappears in the new neighborhood.

The links are chosen at random from the set of all the existing
links in the fully connected network. Selecting any particular link is
equally likely. The probability of a link failing or recovering is also
equally likely. We also have imposed an additional condition in our
simulations that a node at any given time cannot have more than Å
neighbors. Here, Å indicates the degree of the node. This condition
is imposed in order to make sure that all the links pertaining to one
node alone will not be active. This helps in simulating the mobility
more closely.

The average number of messages and the average message length
for each of these algorithms are obtained by varying the interarrival
time between two events (Figures 8–10). An event can be either a
link failure or a link recovery. For the purpose of event generation,
we consider a fully connected topology and start off with a given
initial topology. Since any random link can fail or recover at any
time, our model simulates mobility closely.

The above results indicate that the routing algorithm of WRP
outperforms all other algorithms which we have simulated, namely,
DBF, DUAL and ILS. We were not able to simulate ILS algorithm
for ARPANET topology due to limited resources. The statistics
about the average number of messages and the average message
length have been collected for all the above mentioned topologies
for all the four algorithms by varying the interarrival time between
events (failures and recoveries).

In all cases, the average number of messages for DBF and DUAL
are more than that of WRP. This is because, DBF suffers from
counting-to-infinity problem and DUAL uses an interneighbor co-
ordination mechanism to achieve loop-freedom and this synchro-
nization mechanism spans the entire diameter of the network. ILS
sends maximum number of messages since the complete topology
information has to be transmitted to each node every time the topol-
ogy changes.

The average length of each message is the highest in DUAL as
compared to all other algorithms. The average message length in
case of ILS is almost constant since it always sends the complete
topology information. Even though we do not have simulation
results for ILS in case of ARPANET topology, we can extrapolate
the results from the other two network topologies and can expect
similar behavior for ARPANET topology also.

² Ì_�&��
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A new routing protocol, WRP, for a packet radio network has been
presented. This protocol is based on a path-finding algorithm which
substantially reduces the number of cases in which routing loops can
occur. A mechanism has been proposed for the reliable exchange
of update messages. The performance of the routing algorithm in
WRP has been compared with that of an ideal topology broadcast
algorithm (ILS), DUAL and DBF for highly dynamic environment
through simulations. The simulation results show that WRP pro-
vides about 50% improvement in the convergence time as compared
to DUAL. The results indicate that WRP is a good alternative for

routing in packet radio networks.
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Figure 8: Los-Nettos
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Figure 9: Nsfnet
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Figure 10: ARPANET


